A numerical scheme for stochastic differential equations with distributional drift
نویسندگان
چکیده
In this paper we present a scheme for the numerical solution of one-dimensional stochastic differential equations (SDEs) whose drift belongs to fractional Sobolev space negative regularity (a subspace Schwartz distributions). We obtain rate convergence in suitable $L^1$-norm and implement numerically. To best our knowledge is first study (and implement) solutions SDEs lives distributions. As byproduct also an estimate applied with $L^p$-spaces $p\in(1,\infty)$.
منابع مشابه
A Parameter Uniform Numerical Scheme for Singularly Perturbed Differential-difference Equations with Mixed Shifts
In this paper, we consider a second-order singularly perturbed differential-difference equations with mixed delay and advance parameters. At first, we approximate the model problem by an upwind finite difference scheme on a Shishkin mesh. We know that the upwind scheme is stable and its solution is oscillation free, but it gives lower order of accuracy. So, to increase the convergence, we propo...
متن کاملNumerical scheme for backward doubly stochastic differential equations
We study a discrete-time approximation for solutions of systems of decoupled forward-backward doubly stochastic differential equations (FBDSDEs). Assuming that the coefficients are Lipschitz-continuous, we prove the convergence of the scheme when the step of time discretization, |π| goes to zero. The rate of convergence is exactly equal to |π|1/2. The proof is based on a generalization of a rem...
متن کاملBackward stochastic differential equations with Young drift
We show the well-posedness of backward stochastic differential equations containing an additional drift driven by a path of finite q-variation with q ∈ [1, 2). In contrast to previous work, we apply a direct fixpoint argument and do not rely on any type of flow decomposition. The resulting object is an effective tool to study semilinear rough partial differential equations via a Feynman–Kac typ...
متن کاملA new numerical scheme for solving systems of integro-differential equations
This paper has been devoted to apply the Reconstruction of Variational Iteration Method (RVIM) to handle the systems of integro-differential equations. RVIM has been induced with Laplace transform from the variational iteration method (VIM) which was developed from the Inokuti method. Actually, RVIM overcome to shortcoming of VIM method to determine the Lagrange multiplier. So that, RVIM method...
متن کاملA Numerical Scheme for Solving Nonlinear Fractional Volterra Integro-Differential Equations
In this paper, a Bernoulli pseudo-spectral method for solving nonlinear fractional Volterra integro-differential equations is considered. First existence of a unique solution for the problem under study is proved. Then the Caputo fractional derivative and Riemman-Liouville fractional integral properties are employed to derive the new approximate formula for unknown function of the problem....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Stochastic Processes and their Applications
سال: 2022
ISSN: ['1879-209X', '0304-4149']
DOI: https://doi.org/10.1016/j.spa.2022.09.003